publication

Recursive Functions in JavaScript: 10 Examples

Miquel Canal

Tuesday 24, November 2020
  • Software Engineering
  • JavaScript

What is a recursive function?

A recursive function is a function designed to call itself directly or indirectly. Using recursion, a problem can be solved by returning the value call of the same particular function.

A recursive function needs to be terminated at some point. The return of a recursive function is usually based on internal conditions which forwards the logic down to a new iteration until the base case is met.

Base cases in recursive functions.

In recursive functions, the base case is that iteration of a recursive function that does not need an additional recursion to solve a problem.

Base cases are mandatory on recursive functions. Without a base case a recursive function will never terminate leading it to an infinite loop.

1 - Linear sum

Sum all values from 0 to given number and display the result.

function sum(number) {
    if (number===0) {
        return 0;
    }
    return number + sum(number-1);
}

sum(10);

2 - Linear sum for even numbers

Sum all even numbers from 0 to given number and display the result.

function sumEven(number) {
    if (number===0) {
        return 0;
    } else if (number%2 !== 0) {
        return sumEven(number-1);
    }
    return number + sumEven(number-1);
}

sumEven(10);

3 - Number exponent (power)

Returns the value of exponent operation from given number and grade.

function pow(number, power) {
    if (power===1) {
        return number;
    }
    return number * pow(number, power-1);
}

pow(2,2);

4 - Factorial of a number

Returns the product of a given number from 1 to N.

function factorial(number) {
    if (number===1) {
        return 1;
    }
    return number*factorial(number-1);
}

factorial(3);

5 - Pascal Triangle

Display Pascal’s triangular array of the binomial coefficients.

Pascal Triangle
function pascal(row, column) {
    if (column>row) {
        return 0;
    }
    if (column<=1 || row<=1) {
        return 1;
    }
    return pascal(row-1, column) + pascal(row-1, column-1);
}

function triangle(number) {
    let string = "";
    for (let row=1; row<=number; row++) {
        for(let column=1; column<=row; column++) {
            string += `${pascal(row, column)} `;
        }
        string += "\n";
    }
    console.log(string);
}

triangle(10);

6 - Fibonacci sequence

Displays the Fibonacci sequence from a given number starting with 0.

Fibonacci Sequence
function fib(number) {
    function calc(number) {
        if (number<=1) {
            return number;
        }
        return calc(number-1) + calc(number-2);
    }
    let string = '';
    for(let i=1; i<=number; i++) {
        string += `${calc(i)} `;
    }
    console.log(string);
}

fib(10)

7 - Sieve of Eratosthenes

Sieve of eratosthenes

An ancient algorithm for finding all prime numbers up to a given number.

function soe(n) {
    let a = []
    let p = 2
    for (let i=p; i<=n; i++) {
        a.push(i)
    }
    console.log(compose(p, a, n).filter(m => m !== 0).join('-'));
}

function compose(p, a, n) {
    if (p*p > n) {
        return a
    }
    a = a.map(m => m!==p && m%p===0 ? 0 : m)
    p = a.find(m => m!==0 && m>p)
    return compose(p, a, n)
}

soe(100);

8 - Object search

Search a given value on properties of nested objects.

function search(obj, value) {
    if (typeof obj !== 'object') {
        return obj === value
    }

    for (const key in obj) {
        if (obj.hasOwnProperty(key) && search(obj[key], value)) {
            return true;
        }
    }
    return false;
}

search({
    level_1: {
        level_2: {
            level_3: {
                level_4: {
                    level_5: {
                        value: 20
                    }
                }
            }
        }
    }
}, 20);

9 - Leaf nodes on Binary Tree

Returns the leaf nodes of a given binary tree.

Binary Tree
function search_leaf(tree) {
    if (!tree.left && !tree.right) {
        return tree.value
    }
    if (tree.left) {
        let l = search_leaf(tree.left)
        if (l) { console.log(l) }
    }
    if (tree.right) {
        let l = search_leaf(tree.right)
        if (l) { console.log(l) }
    }
}

search_leaf({
    "value": 8,
    "left": {
        "value": 3,
        "left": {
            "value": 1,
            "left": null,
            "right": null
        },
        "right": {
            "value": 6,
            "left": {
                "value": 4,
                "left": null,
                "right": null
            },
            "right": {
                "value": 7,
                "left": null,
                "right": null
            }
        }
    },
    "right": {
        "value": 10,
        "left": null,
        "right": {
            "value": 14,
            "left": {
                "value": 13,
                "left": null,
                "right": null
            },
            "right": null
        }
    }
});

10 - Leaf nodes on Binary Search Tree

Returns the leaf nodes on a Binary Search Tree.

Binary Search Tree
function binary_search_tree(array) {
    if (array.length===1) {
        console.log(array[0]);
        return;
    }
    const base = array[0]
    const right = array.findIndex(n => n>base)
    binary_search_tree(array.slice(1,right))
    binary_search_tree(array.slice(right))
}

binary_search_tree([890,325,290,530,965]);

References

Domain Driven Design (DDD)

Domain Driven Design (DDD)

What is Domain Driven Design and why it is important to define a clear terminology? This article covers the key aspects of developing software following best practices of Domain Driven Design.

Introduction to Algorithm Complexity Analysis

Introduction to Algorithm Complexity Analysis

A basic but helpul introduction to Algorithm Complexity Analysis. An overview of tools for analysing algorithms and representing their complexity.

The 12-Factor methodology

The 12-Factor methodology

The twelve-factor app is a methodology used to build software-as-a-service apps that are easy to scale up without significant changes to tooling or architecture.

This site uses cookies to ensure a great experience. By continue navigating through the site you accept the storage of these cookies.