publication

Machine Learning: The Basics

Miquel Canal

Wednesday 2, September 2020
  • Machine Learning

What is machine learning?

Two definitions of Machine Learning to understand the concept.
"the field of study that gives computers the ability to learn without being explicitly programmed." By Arthur Samuel.

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." by Tom Mitchell.

Supervised learning

The term Supervised Learning refers to the process of giving data sets and the expected "right answer" to an algorithm. The task for the algorithm is then to produce a model that matches the right outputs for each data set.

In this process the algorithm learns to shape a model by comparing its outputs to the one given by a human. It is called supervised learning because the process of an algorithm learning from the training dataset can be thought of as a teacher supervising the learning process.

Supervised learning algorithms problems can be grouped into two main categories:

Unsupervised learning

Unsupervised learning allows to approach problems without knowing the expected output. Algorithms derivate structure from a given data set without humans knowing how results will be. They are called unsupervised learning because there is no feedback based on the prediction results nor correct answers.

Unsupervised learning algorithms problems can be grouped into two main categories:

References

Exploring The Digital Transformation of Energy.

Exploring The Digital Transformation of Energy.

Notes from a webinar presentation about the future of the energy sector. Insights of the digital transformation that the energy industry is currently involved in.

Object Composition over class inheritance.

Object Composition over class inheritance.

Why you should favour object composition over class inheritance. A Comparison of these object-oriented techniques and their use cases in software development.

Virtual Environments in Python

Virtual Environments in Python

A look out to Python's virtual environments. Why are they useful and how can be used in software applications to install Python packages using Python Package Index (PyPI)

This site uses cookies to ensure a great experience. By continue navigating through the site you accept the storage of these cookies.